organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-[3-(Dimethylamino)propyl]-5Hdibenzo[a,d]cycloheptan-5-ol

Xiang Li,^a Jun Chen,^a* Dan Wang,^b Feng Han^a and Cheng Yao^a

^aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China, and ^bBioengineering Department, Xuzhou Higher Vocational College of Bioengineering, Mine West Road, Xuzhou, Xuzhou 221006, People's Republic of China

Correspondence e-mail: yaocheng@njut.edu.cn

Received 19 October 2007; accepted 20 October 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.010 Å; R factor = 0.080; wR factor = 0.201; data-to-parameter ratio = 10.6.

The title compound, C₂₀H₂₃NO, was synthesized by the reaction of dibenzo[a,d]cyclohepta-1,4,6-trien-5-one and dimethylaminopropylmagnesium. Intramolecular O-H···N hydrogen bonding causes the formation of a non-planar sevenmembered ring. The benzene rings are oriented at a dihedral angle of 51.37 (3)°.

Related literature

For related literature, see: Nakagawa et al. (1996); Wang et al. (1999). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

C20H23NO $M_r = 293.39$ Orthorhombic, P212121 a = 11.127 (2) Å b = 11.325 (2) Å c = 13.155 (3) Å

V = 1657.7 (6) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 298 (2) K $0.40 \times 0.10 \times 0.10 \ \mathrm{mm}$

Data collection

Enraf–Nonius CAD-4	1858 independent reflections
diffractometer	1113 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	3 standard reflections
(North et al., 1968)	frequency: 120 min
$T_{\min} = 0.952, T_{\max} = 0.963$	intensity decay: none
858 measured reflections	

Refinement $R[F^2 > 2\sigma(F^2)] = 0.080$

 $wR(F^2) = 0.201$ S = 1.011858 reflections 175 parameters 53 restraints H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

 $2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

I

(

О−Н…А	D-H	H···A	$D \cdots A$	$D - H \cdots A$
$D - H0A \cdots N$	0.85	2.10	2.703 (8)	127

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Centre, Nanjing University, for providing the Enraf-Nonius CAD-4 diffractometer for this research project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2346).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.

Acta Cryst. (2007). E63, o4460 [doi:10.1107/S1600536807052026]

5-[3-(Dimethylamino)propyl]-5*H*-dibenzo[*a*,*d*]cycloheptan-5-ol

X. Li, J. Chen, D. Wang, F. Han and C. Yao

Comment

Triene derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa *et al.*, 1996; Wang *et al.*, 1999). These compounds are known to exhibit diverse biological effects, such as insecticidal and fungicidal activities (Wang *et al.*, 1999). We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The intramolecular O—H···N hydrogen bond (Table 1) causes to the formation of a non-planar seven-membered ring A (N/C3–C6/O/H0A). Rings B (C7–C12) and D (C15–C20) are nearly planar and they are oriented at a dihedral angle of 51.37 (3)°. The seven-membered ring C (C6/C7/C12–C15/C20) is not-planar.

In the crystal packing (Fig. 2), the molecules are stacked along the *a* axis.

Experimental

For the preparation of the title compound, (I), dibenzo[a,d]cyclohepta-1,4,6-triene-5-one (620 mg, 2 mmol) and dimethylaminopropyl magnesium (690 mg, 5 mmol) were added in a flask (25 ml) and reacted in an oil bath (363 K) for 6 h. After cooling and filtering, crude compound (I) was obtained. Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetone solution (m.p. 480 K).

Refinement

H atoms were positioned geometrically, with O—H = 0.85 Å (for OH) and C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,O)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Fig. 2. A packing diagram of (I).

 $D_{\rm x} = 1.176 {\rm ~Mg~m}^{-3}$

Melting point: 480 K Mo *K*α radiation

Cell parameters from 25 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\mu = 0.07 \text{ mm}^{-1}$ T = 298 (2) K

Plate, colourless

 $0.40 \times 0.10 \times 0.10 \text{ mm}$

 $\theta = 9 - 12^{\circ}$

5-[3-(Dimethylamino)propyl]-5H-dibenzo[a,d]cycloheptan-5-ol

Crystal data

C₂₀H₂₃NO $M_r = 293.39$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 11.127 (2) Å b = 11.325 (2) Å c = 13.155 (3) Å V = 1657.7 (6) Å³ Z = 4 $F_{000} = 632$

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.0000$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 26.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.4^{\circ}$
T = 298(2) K	$h = 0 \rightarrow 13$
$\omega/2\theta$ scans	$k = 0 \rightarrow 13$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 16$
$T_{\min} = 0.952, \ T_{\max} = 0.963$	3 standard reflections
1858 measured reflections	every 120 min
1858 independent reflections	intensity decay: none
1113 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained

$R[F^2 > 2\sigma(F^2)] = 0.080$	$w = 1/[\sigma^2(F_o^2) + (0.06P)^2 + 2P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.201$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.01	$\Delta \rho_{max} = 0.28 \text{ e } \text{\AA}^{-3}$
1858 reflections	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
175 parameters	Extinction correction: none
53 restraints	
Primary atom site location: structure-invariant direct methods	

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
0	0.1483 (3)	0.9481 (4)	0.1297 (3)	0.0623 (12)
H0A	0.0960	0.9318	0.1746	0.075*
Ν	-0.0027 (5)	1.0514 (7)	0.2639 (5)	0.092 (2)
C1	-0.1191 (7)	0.9969 (8)	0.2686 (7)	0.106
H1A	-0.1597	1.0074	0.2048	0.159*
H1B	-0.1654	1.0328	0.3219	0.159*
H1C	-0.1101	0.9141	0.2823	0.159*
C2	-0.0201 (8)	1.1710 (7)	0.2385 (7)	0.108
H2A	0.0563	1.2076	0.2262	0.162*
H2B	-0.0599	1.2106	0.2935	0.162*
H2C	-0.0687	1.1762	0.1783	0.162*
C3	0.0684 (8)	1.0329 (7)	0.3559 (6)	0.102
НЗА	0.0616	0.9511	0.3770	0.122*
H3B	0.0371	1.0821	0.4101	0.122*
C4	0.2023 (7)	1.0633 (7)	0.3378 (7)	0.094
H4A	0.2072	1.1355	0.2984	0.113*
H4B	0.2405	1.0778	0.4029	0.113*
C5	0.2718 (5)	0.9653 (5)	0.2820 (4)	0.0548 (15)
H5A	0.2398	0.8896	0.3032	0.066*
H5B	0.3552	0.9684	0.3034	0.066*
C6	0.2681 (5)	0.9710 (6)	0.1624 (4)	0.0464 (14)
C7	0.3438 (5)	0.8681 (6)	0.1212 (4)	0.0520 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C8	0.2919 (6)	0.7768 (6)	0.0715 (4)	0.0604 (16)
H8A	0.2094	0.7793	0.0604	0.072*
C9	0.3542 (7)	0.6811 (7)	0.0370 (5)	0.0734 (19)
H9A	0.3132	0.6208	0.0038	0.088*
C10	0.4754 (7)	0.6721 (6)	0.0501 (6)	0.080(2)
H10A	0.5179	0.6074	0.0254	0.096*
C11	0.5326 (6)	0.7614 (6)	0.1010 (5)	0.0702 (18)
H11A	0.6145	0.7544	0.1139	0.084*
C12	0.4697 (5)	0.8675 (6)	0.1358 (4)	0.0589 (15)
C13	0.5424 (6)	0.9602 (8)	0.1862 (5)	0.0655 (19)
H13A	0.6102	0.9355	0.2216	0.079*
C14	0.5207 (6)	1.0687 (8)	0.1853 (5)	0.073 (2)
H14A	0.5766	1.1134	0.2212	0.088*
C15	0.4259 (6)	1.1385 (6)	0.1395 (4)	0.0618 (16)
C16	0.4494 (7)	1.2484 (7)	0.1066 (5)	0.083 (2)
H16A	0.5244	1.2805	0.1211	0.099*
C17	0.3680 (8)	1.3173 (7)	0.0518 (6)	0.084 (2)
H17A	0.3858	1.3946	0.0333	0.101*
C18	0.2607 (7)	1.2657 (8)	0.0267 (5)	0.090 (3)
H18A	0.2081	1.3061	-0.0158	0.108*
C19	0.2278 (6)	1.1554 (6)	0.0623 (4)	0.0655 (18)
H19A	0.1505	1.1277	0.0498	0.079*
C20	0.3088 (5)	1.0841 (6)	0.1173 (4)	0.0597 (17)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0	0.0347 (19)	0.103 (3)	0.049 (2)	-0.008 (2)	-0.0014 (18)	-0.008 (3)
Ν	0.052 (3)	0.151 (6)	0.073 (4)	0.005 (4)	0.018 (3)	-0.024 (5)
C1	0.106	0.106	0.106	0.000	0.000	0.000
C2	0.108	0.108	0.108	0.000	0.000	0.000
C3	0.102	0.102	0.102	0.000	0.000	0.000
C4	0.094	0.094	0.094	0.000	0.000	0.000
C5	0.053 (3)	0.073 (4)	0.038 (3)	0.003 (3)	-0.006 (3)	-0.003 (3)
C6	0.033 (3)	0.082 (4)	0.023 (2)	-0.006 (3)	-0.003 (2)	-0.009 (3)
C7	0.044 (3)	0.089 (4)	0.023 (2)	-0.001 (3)	0.006 (2)	0.003 (3)
C8	0.053 (3)	0.094 (4)	0.034 (3)	-0.001 (3)	0.002 (3)	0.007 (3)
C9	0.074 (4)	0.086 (4)	0.060 (4)	-0.004 (4)	0.008 (4)	-0.002 (4)
C10	0.078 (4)	0.087 (4)	0.073 (4)	0.027 (4)	0.006 (4)	0.008 (4)
C11	0.056 (4)	0.094 (4)	0.061 (4)	0.017 (3)	0.007 (3)	0.010 (3)
C12	0.050 (3)	0.095 (4)	0.032 (3)	0.007 (3)	0.006 (3)	0.002 (3)
C13	0.042 (3)	0.117 (6)	0.037 (3)	0.003 (4)	0.002 (3)	0.006 (4)
C14	0.049 (4)	0.122 (6)	0.049 (4)	-0.006 (4)	0.008 (3)	0.018 (4)
C15	0.055 (4)	0.103 (5)	0.028 (3)	-0.003 (4)	0.003 (3)	0.005 (3)
C16	0.080 (5)	0.109 (6)	0.058 (5)	-0.016 (5)	0.010 (4)	-0.012 (5)
C17	0.094 (6)	0.089 (5)	0.069 (5)	-0.010 (5)	0.011 (5)	0.012 (4)
C18	0.079 (5)	0.145 (8)	0.045 (4)	0.009 (6)	0.000 (4)	0.012 (5)
C19	0.060 (4)	0.102 (5)	0.035 (3)	0.011 (4)	-0.004 (3)	-0.005 (4)

C20	0.046 (3)	0.104 (5)	0.030 (3)	0.000 (3)	-0.001 (3)	-0.017 (3)
Geometric param	neters (Å, °)					
0		1 424 (6)	C8-	C9		1 364 (9)
0—Н0А		0.8500	C8-	H8A		0.9300
N—C2		1.409 (10)	C9-			1.363 (9)
N—C1		1.436 (9)	C9-	-H9A		0.9300
N—C3		1.460 (10)	Cl)—C11		1.369 (7)
C1—H1A		0.9600	C10)—H10A		0.9300
C1—H1B		0.9600	Cl	I—C12		1.465 (9)
C1—H1C		0.9600	Cl	I—H11A		0.9300
C2—H2A		0.9600	Cl	2—C13		1.481 (9)
C2—H2B		0.9600	C13	3—C14		1.253 (10)
C2—H2C		0.9600	C13	3—H13A		0.9300
C3—C4		1.547 (11)	C14	4—C15		1.450 (9)
С3—НЗА		0.9700	C14	4—H14A		0.9300
С3—Н3В		0.9700	C1:	5—C16		1.344 (9)
C4—C5		1.540 (9)	C1:	5—C20		1.470 (8)
C4—H4A		0.9700	Cle	6—C17		1.396 (10)
C4—H4B		0.9700	Cle	6—H16A		0.9300
C5—C6		1.575 (7)	C17	7—C18		1.370 (10)
C5—H5A		0.9700	C17	7—H17A		0.9300
C5—H5B		0.9700	C18	3—C19		1.383 (8)
C6—C20		1.483 (9)	C18	3—H18A		0.9300
С6—С7		1.537 (8)	C19	9—С20		1.410 (8)
С7—С8		1.353 (8)	C19	9—H19A		0.9300
C7—C12		1.414 (8)				
С6—О—Н0А		118.1	C8-	C7C6		121.1 (5)
C2—N—C1		107.4 (7)	C12	2—С7—С6		119.9 (6)
C2—N—C3		114.2 (7)	C7-	C8C9		123.5 (7)
C1—N—C3		113.1 (7)	C7-	C8H8A		118.3
N—C1—H1A		109.5	С9-	C8H8A		118.3
N—C1—H1B		109.5	C8-	C9C10		121.3 (8)
H1A-C1-H1B		109.5	C8-	—С9—Н9А		119.3
N—C1—H1C		109.5	C10)—С9—Н9А		119.3
H1A—C1—H1C		109.5	C9-			117.8 (7)
H1B—C1—H1C		109.5	С9-	—С10—Н10А		121.1
N—C2—H2A		109.5	C11	L—C10—H10A		121.1
N—C2—H2B		109.5	C10	D—C11—C12		122.5 (6)
H2A—C2—H2B		109.5	C10)—C11—H11A		118.8
N—C2—H2C		109.5	C12	2—C11—H11A		118.8
H2A—C2—H2C		109.5	C7-			115.8 (6)
H2B—C2—H2C		109.5	C7-			126.8 (6)
N—C3—C4		111.3 (7)	C1	I—C12—C13		117.4 (6)
N—C3—H3A		109.4	C14	4—C13—C12		125.9 (7)
С4—С3—НЗА		109.4	C14	4—C13—H13A		117.1
N—C3—H3B		109.4	C12	2—С13—Н13А		117.1
C4—C3—H3B		109.4	C13	3—C14—C15		132.7 (8)

НЗА—СЗ—НЗВ	108.0	C13—C14—H14A	113.6
C5—C4—C3	113.4 (7)	C15—C14—H14A	113.6
С5—С4—Н4А	108.9	C16—C15—C14	119.8 (7)
C3—C4—H4A	108.9	C16—C15—C20	119.8 (7)
C5—C4—H4B	108.9	C14—C15—C20	120.0 (6)
C3—C4—H4B	108.9	C15—C16—C17	123.9 (8)
H4A—C4—H4B	107.7	C15—C16—H16A	118.1
C4—C5—C6	115.7 (6)	С17—С16—Н16А	118.1
С4—С5—Н5А	108.4	C18—C17—C16	116.9 (8)
С6—С5—Н5А	108.4	С18—С17—Н17А	121.6
C4—C5—H5B	108.4	С16—С17—Н17А	121.6
C6—C5—H5B	108.4	C17—C18—C19	122.3 (8)
H5A—C5—H5B	107.4	C17—C18—H18A	118.9
O—C6—C20	108.8 (5)	C19—C18—H18A	118.9
O—C6—C7	105.6 (5)	C18—C19—C20	121.4 (7)
C20—C6—C7	110.3 (4)	С18—С19—Н19А	119.3
O—C6—C5	108.6 (4)	С20—С19—Н19А	119.3
C20—C6—C5	115.3 (5)	C19—C20—C15	115.4 (6)
C7—C6—C5	107.8 (5)	C19—C20—C6	120.3 (5)
C8—C7—C12	119.0 (6)	C15—C20—C6	123.6 (5)
C2—N—C3—C4	-71.8 (9)	C10-C11-C12-C13	-177.5 (6)
C1—N—C3—C4	165.1 (7)	C7-C12-C13-C14	-32.6 (11)
N—C3—C4—C5	-79.0 (8)	C11-C12-C13-C14	150.3 (7)
C3—C4—C5—C6	87.5 (8)	C12-C13-C14-C15	0.0 (13)
C4—C5—C6—O	-67.0(7)	C13-C14-C15-C16	-147.4 (8)
C4—C5—C6—C20	55.4 (7)	C13-C14-C15-C20	24.8 (11)
C4—C5—C6—C7	179.0 (5)	C14-C15-C16-C17	172.8 (6)
O—C6—C7—C8	-4.1 (7)	C20-C15-C16-C17	0.5 (9)
C20—C6—C7—C8	-121.5 (6)	C15-C16-C17-C18	-3.4 (10)
C5—C6—C7—C8	111.9 (6)	C16-C17-C18-C19	6.7 (11)
O-C6-C7-C12	176.5 (5)	C17-C18-C19-C20	-7.4 (11)
C20—C6—C7—C12	59.1 (6)	C18—C19—C20—C15	4.1 (9)
C5—C6—C7—C12	-67.5 (7)	C18—C19—C20—C6	174.6 (6)
C12—C7—C8—C9	2.1 (10)	C16-C15-C20-C19	-0.8 (8)
C6—C7—C8—C9	-177.3 (6)	C14—C15—C20—C19	-173.0 (5)
C7—C8—C9—C10	-0.5 (11)	C16—C15—C20—C6	-171.0 (5)
C8—C9—C10—C11	1.2 (12)	C14—C15—C20—C6	16.8 (8)
C9—C10—C11—C12	-3.6 (11)	O—C6—C20—C19	6.6 (7)
C8—C7—C12—C11	-4.1 (9)	C7—C6—C20—C19	122.0 (6)
C6—C7—C12—C11	175.3 (5)	C5-C6-C20-C19	-115.6 (6)
C8—C7—C12—C13	178.7 (6)	O—C6—C20—C15	176.4 (5)
C6—C7—C12—C13	-1.9 (10)	C7—C6—C20—C15	-68.2 (6)
C10—C11—C12—C7	5.0 (9)	C5—C6—C20—C15	54.2 (7)
Hydrogen-bond geometry (Å, °)			

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
O—H0A…N	0.85	2.10	2.703 (8)	127

